On the K(1)-local homotopy of $$\mathrm {tmf}\wedge \mathrm {tmf}$$
نویسندگان
چکیده
Abstract As a step towards understanding the $$\mathrm {tmf}$$ tmf -based Adams spectral sequence, we compute K (1)-local homotopy of {tmf}\wedge \mathrm xmlns:mml="http://www.w3.org/1998/Math/MathML">tmf∧tmf , using small presentation $$L_{K(1)}\mathrm xmlns:mml="http://www.w3.org/1998/Math/MathML">LK(1)tmf due to Hopkins. We also describe sequence.
منابع مشابه
Modal $\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\tilde{\mathrm{l}}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{C}$ Logics and Predicate Superintuitionistic Logics: $\mathrm{C}_{0\Gamma \mathrm{r}\mathrm{e}..\mathrm{S}},\mathrm{p}$
In this note we deal with intuitionistic modal logics over $\mathcal{M}\mathcal{I}PC$ and predicate superintuitionistic logics. We study the correspondence between the lattice of all (normal) extensions of MTPC and the lattice of all predicate superintuitionistic logics. Let $\mathrm{L}_{Prop}$ denote a propositional language which contains two modal operators $\square$ and $\mathrm{O}$ , and $...
متن کامل$\mathrm{Pal}^k$ Is Linear Recognizable Online
Given a language L that is online recognizable in linear time and space, we construct a linear time and space online recognition algorithm for the language L ·Pal, where Pal is the language of all nonempty palindromes. Hence for every fixed positive k, Pal is online recognizable in linear time and space. Thus we solve an open problem posed by Galil and Seiferas in 1978.
متن کاملCOMPUTATION OF THE HOMOTOPY OF THE SPECTRUM tmf
This paper contains a complete computation of the homotopy ring of the spectrum of topological modular forms constructed by Hopkins and Miller. The computation is done away from 6, and at the (interesting) primes 2 and 3 separately, and in each of the latter two cases, a sequence of algebraic Bockstein spectral sequences is used to compute the E2 term of the elliptic Adams-Novikov spectral sequ...
متن کاملApproximately Counting H-Colorings is $\#\mathrm{BIS}$-Hard
We examine the computational complexity of approximately counting the list H-colourings of a graph. We discover a natural graph-theoretic trichotomy based on the structure of the graph H . If H is an irreflexive bipartite graph or a reflexive complete graph then counting list H-colourings is trivially in polynomial time. Otherwise, if H is an irreflexive bipartite permutation graph or a reflexi...
متن کاملFuzzy Graph Rewritings
This paper presents fuzzy graph rewriting systems with fuzzy relational calculus. In this paper fuzzy graph means crisp set of vetices and fuzzy set of edges. We provide $\mathrm{f}\mathrm{u}\mathrm{z},7,\mathrm{y}$ relational calculus witll Heyting algebra. Formalizing rewriting system of fuzzy graphs it is important to $\mathrm{c}\cdot 1_{1\mathrm{t})\mathrm{t}}.\mathrm{q}\mathrm{C}1$ how to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Homotopy and Related Structures
سال: 2021
ISSN: ['2193-8407']
DOI: https://doi.org/10.1007/s40062-021-00283-7